Erratum: Shock-wave structure using nonlinear modeled Boltzmann equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Wave Shock solutions of Burgers equations

In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...

متن کامل

On the Boltzmann Equation for Weakly Nonlinear Wave Equations

We explain how the kinetic theory of L. Boltzmann is applied to weakly nonlinear wave equations.

متن کامل

Nonlinear Wave Equations

where := −∂2 t +∆ and u[0] := (u, ut)|t=0. The equation is semi-linear if F is a function only of u, (i.e. F = F (u)), and quasi-linear if F is also a function of the derivatives of u (i.e. F = F (u,Du), where D := (∂t,∇)). The goal is to use energy methods to prove local well-posedness for quasilinear equations with data (f, g) ∈ Hs × Hs−1 for large enough s, and then to derive Strichartz esti...

متن کامل

Nonlinear Wave Equations

This paper explores the properties of nonlinear wave equations. The proof for the existence and uniqueness of solutions to the 1+1 dimensional linear wave equation with smooth data is given. The D’Alembert formula is then presented in its full generality for the nonlinear equation. Important properties like the domain of dependence and propagation of information are discussed and motivated. The...

متن کامل

Nonlinear stochastic wave equations

In this paper we study the Cauchy problem for the semilinear stochastic wave equation (@ 2

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics of Fluids

سال: 1973

ISSN: 0031-9171

DOI: 10.1063/1.1694389